Two phase transitions in (s + id)-wave Bardeen - Cooper - Schrieffer superconductivity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys.: Condens. Matter 10 L319
(http://iopscience.iop.org/0953-8984/10/20/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.209
The article was downloaded on 14/05/2010 at 13:11

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Two phase transitions in ($\mathbf{s}+\mathrm{id}$)-wave Bardeen-Cooper-Schrieffer superconductivity

Angsula Ghosh and Sadhan K Adhikari
Instituto de Física Teórica, Universidade Estadual Paulista, 01.405-900 São Paulo, São Paulo, Brazil

Received 10 March 1998

Abstract

We establish universal behaviour in the temperature dependencies of some observables in ($\mathrm{s}+\mathrm{id}$)-wave BCS superconductivity in the presence of a weak s wave. We find also a second second-order phase transition. As temperature is lowered past the usual critical temperature T_{c}, a less ordered superconducting phase is created in the d wave, which changes to a more ordered phase in a ($\mathrm{s}+\mathrm{id} \mathrm{)} \mathrm{wave} \mathrm{at} \mathrm{T}_{c 1}\left(<T_{c}\right)$. The presence of two phase transitions is manifested by the two jumps in the specific heat at T_{c} and $T_{c 1}$. The temperature dependencies of the susceptibility, penetration depth, and thermal conductivity also confirm the existence of the new phase transition.

The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [1, 2] has been successfully applied to different systems in pure angular momentum states such as s , p , and d waves. However, the unconventional high- T_{c} superconductors [3] with high critical temperature T_{c} have a complicated lattice structure with extended and/or mixed symmetry for the order parameter [4]. Some of the high- T_{c} materials have singlet d-wave Cooper pairs and the order parameter has $\mathrm{d}_{x^{2}-y^{2}}$ symmetry in two dimensions [4]. Recent measurements [5] of the penetration depth $\lambda(T)$ and superconducting specific heat at different temperatures T and related theoretical analysis [6, 7] also support this point of view. In some cases there is the signature of an extended s - or d-wave symmetry. The possibility of a mixed ($\mathrm{s}-$ d)-wave symmetry was suggested some time ago by Ruckenstein et al and Kotliar [10]. There is experimental evidence of mixed s- and d-wave symmetry in compounds such as $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}(\mathrm{YBCO})$ [8] and $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{CaCu}_{2} \mathrm{O}_{8+x}$ [9], where an $\mathrm{s}+\exp (\mathrm{i} \theta) \mathrm{d}$ symmetry is applicable. Recently, this idea has been explored to explain the NMR data for the superconductor YBCO and the Josephson critical current observed in YBCO-SNS and YBCO -Pb junctions [11]. There have also been certain recent theoretical studies using mixed s- and d-wave symmetries [12], and it was noted that a stable mixed $\mathrm{s}+\mathrm{id}$ state is more likely to be realized than an $s+d$ state, in view of the different couplings and lattice symmetries.

It is quite natural that the Cooper electrons might interact in both s and d waves with different couplings. In the presence of simple central potentials the Cooper problem separates into its decoupled s- and d-wave components. The same decoupling occurs in a linear Schrödinger equation. However, in the non-linear BCS theory, the presence of both s - and d-wave components in the interaction would lead to an order parameter of mixed symmetry and consequently a coupled set of BCS equations. The symmetry of the order parameter is to be specified in order to solve this coupled set of equations.

The normal state of most high- T_{c} materials has not been satisfactorily understood, and there are controversies about the appropriate microscopic Hamiltonian and pairing mechanism [4, 7]. Despite this, we study the order parameter in the ($s+i d$)-symmetry case using the weak-coupling microscopic BCS theory based on the Fermi liquid model to extract some model-independent properties of such a description. For a weaker s-wave admixture, quite unexpectedly, we find another second-order phase transition at $T=T_{c 1}<T_{c}$, where the superconducting phase changes from a pure d-wave state for $T>T_{c 1}$ to a mixed (s+id)-wave state for $T<T_{c 1}$. The specific heat exhibits two jumps at the transition points $T=T_{c 1}$ and $T=T_{c}$. The temperature dependencies of the superconducting specific heat, susceptibility, penetration depth, and thermal conductivity change drastically at $T=T_{c 1}$ from power-law behaviour (typical for a d state with node(s) in the order parameter on the Fermi surface) for $T>T_{c 1}$ to exponential behaviour (typical for an s state with no nodes) for $T<T_{c 1}$. The order parameter for the present $\mathrm{s}+$ id wave does not have a node on the Fermi surface for $T<T_{c 1}$, and it behaves like a modified/extended s-wave one. The observables for the normal state are closer to those for the superconducting $l=2$ state than to those for the superconducting $l=0$ state [7]. Consequently, superconductivity is more pronounced in the s wave than in the d wave. Hence, as the temperature decreases the system passes from the normal state to a 'less' superconducting d-wave state at $T=T_{c}$ and then to a 'more' superconducting extended s-wave state at $T=T_{c 1}$, signalling a second phase transition.

We consider a system of N superconducting electrons under the action of a purely attractive two-electron potential in the partial wave $l(=0,2)$:

$$
\begin{equation*}
V_{p q}=-\sum_{l=0,2} V_{l} \cos \left(l \theta_{p}\right) \cos \left(l \theta_{q}\right) \tag{1}
\end{equation*}
$$

where θ_{p} is the angle of the momentum vector \boldsymbol{p}.
The potential (1) for an arbitrary, small V_{l} leads to Cooper pairing instability at zero temperature in even (odd) angular momentum states for the spin-singlet (spin-triplet) state. The Cooper-pair problem for two electrons above the filled Fermi sea is given by [7]

$$
\begin{equation*}
V_{l}^{-1}=\sum_{q(q>1)} \cos ^{2}(l \theta)\left(2 \epsilon_{q}-\hat{E}_{l}\right)^{-1} \tag{2}
\end{equation*}
$$

with the Cooper binding $C_{l}=2-\hat{E}_{l}$. Here $\epsilon_{q}=\hbar^{2} q^{2} / 2 m$ with m the mass of an electron, and the \boldsymbol{q}-summation is evaluated according to

$$
\begin{equation*}
\sum_{q} \rightarrow \frac{N}{4 \pi} \int \mathrm{~d} \epsilon_{q} \mathrm{~d} \theta \equiv \frac{N}{4 \pi} \int_{0}^{\infty} \mathrm{d} \epsilon_{q} \int_{0}^{2 \pi} \mathrm{~d} \theta \tag{3}
\end{equation*}
$$

Unless the units of the variables are explicitly mentioned, in this work all energy variables are expressed in units of E_{F}, such that $T \equiv T / T_{F}, E_{q} \equiv E_{q} / E_{F}, E_{F}=k_{B}=1$ etc, where $T_{F}\left(E_{F}\right)$ is the Fermi temperature (energy) and k_{B} is the Boltzmann constant.

We consider a weak-coupling renormalized BCS model in two dimensions with $\mathrm{s}+\mathrm{id}$ symmetry. At finite T, one has the following BCS equation:

$$
\begin{equation*}
\Delta_{p}=-\sum_{q} V_{p q} \frac{\Delta_{q}}{2 E_{q}} \tanh \frac{E_{q}}{2 T} \tag{4}
\end{equation*}
$$

with $E_{q}=\left[\left(\epsilon_{q}-\mu\right)^{2}+\left|\Delta_{q}\right|^{2}\right]^{1 / 2}$. The order parameter Δ_{q} has the following anisotropic form: $\Delta_{q} \equiv \Delta_{0}+\mathrm{i} \Delta_{2} \cos (2 \theta)$ where the Δ_{l} are dimensionless. The BCS gap is defined by $\Delta(T)=\left(\Delta_{0}^{2}+\Delta_{2}^{2} / 2\right)^{1 / 2}$, which is the root mean square average of Δ_{q} on the Fermi
surface. Using the above form of Δ_{q} and potential (1), equation (4) becomes the following coupled set of BCS equations for $l=0$ and 2 :

$$
\begin{equation*}
\frac{1}{V_{l}}=\sum_{q} \cos ^{2}(l \theta) \frac{1}{2 E_{q}} \tanh \frac{E_{q}}{2 T} \tag{5}
\end{equation*}
$$

where the coupling is introduced through E_{q}.
Using (2), the set (5) of BCS equations can be explicitly written in terms of Cooper bindings as follows:

$$
\begin{equation*}
\int \mathrm{d} \theta \cos ^{2}(l \theta)\left[\int_{1}^{\infty} \frac{2 \mathrm{~d} \epsilon_{q}}{2 \epsilon_{q}-\hat{E}_{l}}-\int_{0}^{\infty} \frac{\mathrm{d} \epsilon_{q}}{E_{q}} \tanh \frac{E_{q}}{2 T}\right]=0 . \tag{6}
\end{equation*}
$$

The two terms in the BCS equation (6) have ultraviolet divergence. However, the difference between these two terms is finite. The BCS model (6) is independent of the coupling V_{l}, is governed by Cooper binding C_{l}, and has some advantages [7]. Firstly, no energy cut-off is needed in this equation. This is why model (6) is called renormalized [7, 14]. Secondly, this model leads to an increased T_{c} in the weak-coupling limit, appropriate for some high- T_{c} materials [7]. Here, we use the renormalized model for convenience. Otherwise, it has no effect on our conclusions and the same analysis can be performed in the standard BCS model with a cut-off.

Figure 1. The s- and d-wave parameters Δ_{0} and Δ_{2}, and the BCS gap $\Delta(T)$ at different temperatures for the ($\mathrm{s}+\mathrm{id}$)-wave models sd1 (full line) and sd 2 (dashed line) described in the text with different mixtures of s and d waves.

The specific heat per particle is given by [2]

$$
\begin{equation*}
C(T)=\frac{2}{N T^{2}} \sum_{q} f_{q}\left(1-f_{q}\right)\left(E_{q}^{2}-\frac{1}{2} T \frac{\mathrm{~d}\left|\Delta_{q}\right|^{2}}{\mathrm{~d} T}\right) \tag{7}
\end{equation*}
$$

where $f_{q}=1 /\left(1+\exp \left(E_{q} / T\right)\right)$. The spin susceptibility χ is defined by [7]

$$
\begin{equation*}
\chi(T)=\frac{2 \mu_{N}^{2}}{T} \sum_{q} f_{q}\left(1-f_{q}\right) \tag{8}
\end{equation*}
$$

where μ_{N} is the nuclear magneton. The penetration depth λ is defined by [2]

$$
\begin{equation*}
\lambda^{-2}(T)=\lambda^{-2}(0)\left[1-\frac{2}{N T} \sum_{q} f_{q}\left(1-f_{q}\right)\right] . \tag{9}
\end{equation*}
$$

The superconducting-to-normal thermal conductivity ratio $K_{s}(T) / K_{n}(T)$ is defined by [7]
$\frac{K_{s}(T)}{K_{n}(T)}=\left(\sum_{q}\left(\epsilon_{q}-1\right) f_{q}\left(1-f_{q}\right) E_{q}\right) /\left(\sum_{q}\left(\epsilon_{q}-1\right)^{2} f_{q}\left(1-f_{q}\right)\right)$.
We solved the coupled set of equations (6) numerically and calculated the gaps Δ_{0} and Δ_{2} at various temperatures for $T<T_{c}$. The corresponding BCS gap $\Delta(T)$ was also calculated. For a very weak s-wave (d-wave) interaction the only possible solution corresponds to $\Delta_{0}=0\left(\Delta_{2}=0\right)$. In order to have a coupling between s and d waves, both the interaction potentials have to be reasonable. We have studied the solution only for cases in which a coupling between the two equations is allowed. In this domain we have kept the d-wave coupling stronger than the s-wave coupling, so that as the temperature is lowered past T_{c} a superconducting phase in the d wave appears. In figure 1 we plot the temperature dependencies of different $\Delta \mathrm{s}$ for two types of s-d mixing corresponding to (1) $C_{0}=0.0006, C_{2}=0.001$ (full line) and (2) $C_{0}=0.00085, C_{2}=0.001$ (dashed line), referred to as models sd1 and sd2, respectively. For a superconductor with $T_{F}=5000 \mathrm{~K}$, the largest of these Cooper bindings C_{2} is 5 K . The smallness of this binding guarantees the weak-coupling limit, where the BCS model should provide a good description. In both cases the parameter Δ_{2} is suppressed in the presence of a non-zero Δ_{0}. However, the BCS gap $\Delta(T)$ has the same form as in the case of pure s and d waves. In model sd1 (sd2) $\Delta(0) / T_{c}=1.535(1.644), T_{c}=0.0266(0.0266), T_{c 1}=0.01065(0.0206)$. For a pure s (d) wave, $\Delta(0) / T_{c}=1.764$ (1.513) [7]. At $T=0$ the order parameter has s- and d-wave

Figure 2. The specific heat ratio $C(T) / C_{n}\left(T_{c}\right)$ versus T / T_{c} for models sd1 (full line) and sd2 (dashed line). The dotted line represents the pure d-wave result from reference [7] for comparison.
components, and we find that as T increases both components decrease and for $T \geqslant T_{c 1}$ the s-wave component vanishes and one is left with a pure d-wave component, which vanishes at $T=T_{c}$.

In order to substantiate the claim that there is a second phase transition at $T=T_{c 1}$, we study the temperature dependence of the specific heat in some detail. The different specific heats are plotted in figure 2. With this two-step transition, the superconducting specific heat exhibits a very unexpected peculiar behaviour. In both models the specific heat exhibits two jumps-one at T_{c} and another at $T_{c 1}$. From (7) and figure 1, we see that the temperature derivative of $\left|\Delta_{q}\right|^{2}$ has discontinuities at T_{c} and $T_{c 1}$ due to the vanishing of Δ_{2} and Δ_{0}, respectively, responsible for the two jumps in the specific heat. For $T_{c}>T>T_{c 1}$, the specific heat exhibits typical d-wave power-law behaviour, $C_{s}(T) / C_{n}\left(T_{c}\right)=2\left(T / T_{c}\right)^{2}$, as found in recent studies [7]. For $T<T_{c}$, we find an exponential behaviour. Two jumps in specific heat have been observed recently for certain superconducting compounds, which suggests the existence of a coupled $\mathrm{s}+\mathrm{id}$ phase [13].

Figure 3. The spin susceptibility ratio $\chi_{s}(T) / \chi\left(T_{c}\right)$ versus T / T_{c} for models sd1 (full line) and sd2 (dashed line). The dotted lines represent the pure s- and d-wave results from reference [7], and are given for comparison.

Next we study the temperature dependencies of the spin susceptibility, penetration depth and thermal conductivity, which we exhibit in figures $3-5$ where we also plot the results for pure s and d waves from reference [7], for comparison. In all cases, d-wave-type power-law behaviour is obtained for $T_{c}>T>T_{c 1}$. We obtain for the d wave $K_{s}(T) \approx K_{n}(T)\left(T / T_{c}\right)^{1.2}$ and $\chi_{s}(T) / \chi_{n}\left(T_{c}\right) \approx\left(T / T_{c}\right)^{1.3}$ [7]. For $T<T_{c 1}$, there is no node in the present order parameter on the Fermi surface and one has a typical extended s-state behaviour. A passage from a d state to an extended s state at $T_{c 1}$ represents an increase in order and hence an increase in superconductivity [7]. As temperature decreases, the system passes from the normal state to a d-wave state at $T=T_{c}$, and then to an extended s-wave state at $T=T_{c 1}$, signalling a second phase transition.

In conclusion, we have studied the ($\mathrm{s}+\mathrm{id}$)-wave superconductivity employing a renorm-

Figure 4. The penetration depth ratio $\Delta \lambda(T) \equiv[\lambda(T)-\lambda(0)] / \lambda(0)$ versus T / T_{C} for models sd1 (full line) and sd2 (dashed line). The dotted lines represent the pure s- and d-wave results from reference [7], and are given for comparison.

Figure 5. The thermal conductivity ratio $K_{s}(T) / K_{n}(T)$ versus T / T_{c} for models sd1 (full line) and sd2 (dashed line). The dotted lines represent the pure s- and d-wave results from reference [7], and are given for comparison.
alized BCS model in two dimensions, and confirmed the existence of a second-order phase transition at $T=T_{c 1}$ in the presence of a weaker s wave. We have kept the s- and d-wave couplings in such a domain that a coupled ($\mathrm{s}+\mathrm{id}$)-wave solution is allowed. As temperature is lowered past the first critical temperature T_{c}, a weaker (less ordered) superconducting phase is created in the d wave, which changes to a stronger (more ordered) superconducting
 state with no node in the order parameter. The phase transition at $T_{c 1}$ is also marked by
power-law (exponential) temperature dependencies of $C(T), \chi(T), \Delta \lambda(T)$, and $K(T)$ for $T>T_{c 1}\left(<T_{c 1}\right)$. A similar second-order phase transition may occur for some other types of mixture of angular momentum states.

We thank Dr Haranath Ghosh for a very helpful discussion and the Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo for financial support.

References

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 1081175
[2] Tinkham M 1975 Introduction to Superconductivity (New York: McGraw-Hill)
[3] Bednorz J G and Müller K A 1986 Z. Phys. B 641898
[4] Ding H 1996 Nature 38251
Scalapino D J 1995 Phys. Rep. 250329
Carbotte J P and Jiang C 1993 Phys. Rev. B 484231
Levi B G 1996 Phys. Today 4919
[5] Hardy W N, Bonn D A, Morgan D C, Liang R and Zhang K 1993 Phys. Rev. Lett. 703999
Moler K A, Baar D J, Urbach J S, Liang R, Hardy W N and Kapitulnik A 1994 Phys. Rev. Lett. 732744
Gofran K, Campuzano J C, Abrikosov A A, Lindroos M, Bansil A, Ding H, Koelling D and Dabrowski B 1994 Phys. Rev. Lett. 733302
[6] Prohammer M, Perez-Gonzalez A and Carbotte J P 1993 Phys. Rev. B 4715152
Annett J, Goldenfeld N and Renn S R 1991 Phys. Rev. Lett. 432778
Momono N and Ido M 1996 Physica C 264311
Houssa M and Ausloos M 1996 Physica C 265258
[7] Adhikari S K and Ghosh A 1997 Phys. Rev. B 551110
Adhikari S K and Ghosh A 1998 J. Phys.: Condens. Matter 10135
Ghosh A and Adhikari S K 1998 Euro. Phys. J. B 231
[8] Sun A G, Gajewski D A, Maple M B and Dynes R C 1994 Phys. Rev. Lett. 722267
[9] Chaudhari P and Lin S Y 1994 Phys. Rev. Lett. 721084
[10] Ruckenstein A E, Hirschfeld P J and Apel J 1987 Phys. Rev. B 36857 Kotliar G 1988 Phys. Rev. B 373664
[11] Xu J H, Shen J L, Miller J H Jr and Ting C S 1994 Phys. Rev. Lett. 732492 Li Q P, Koltenbah B E C and Joynt R 1993 Phys. Rev. B 48437
[12] Liu M, Xing D Y and Wang Z D 1997 Phys. Rev. B 553181
Musaelian K A, Betouras J, Chubukov A V and Joynt R 1996 Phys. Rev. B 533598
Ren Y, Xu J H and Ting C S 1996 Phys. Rev. B 532249
Mills A J, Monnin H and Pines D 1990 Phys. Rev. B 42167
O'Donovan C and Carbotte J P 1995 Physica C 25287
Beal-Monod M T and Maki K 1996 Physica C 265309
Beal-Monod M T and Maki K 1996 Phys. Rev. B 535775
Mitra M, Ghosh H and Behera S N 1998 Euro. Phys. J. B at press
[13] Sridhar S, Srikanth H, Zhai Z, Willemsen B A, Jacobs T, Erb A, Walker E and Flukiger R 1997 Physica C 282-287 256
O'Donovan C and Carbotte J P 1995 Phys. Rev. B 5216208
Buchholtz L J, Palumbo M, Rainer D and Sauls J A 1995 J. Low Temp. Phys. 1011079
Matsumoto M and Shiba H 1995 J. Phys. Soc. Japan 643384
[14] For an account of renormalization in quantum mechanics, see, for example, Adhikari S K and Frederico T 1995 Phys. Rev. Lett. 744572
Adhikari S K, Frederico T and Goldman I D 1995 Phys. Rev. Lett. 74487
Adhikari S K and Ghosh A 1997 J. Phys. A: Math. Gen. 306653

